金沙国际app-金沙国际手机app下载

金沙国际app包括教育和科研机构建设、学科共建等,欢迎来到金沙国际手机app下载这里有多种线上娱乐游戏,金沙国际app获颁“创意中国榜”中国文化创意产业领军企业,是一家专业从事网络休闲平台游戏开发、运营的服务性企业。

当前位置:金沙国际app > 科学技术 > 如何“喂饱”医疗AI?腾讯这个实验室想了“两个

如何“喂饱”医疗AI?腾讯这个实验室想了“两个

文章作者:科学技术 上传时间:2019-11-16

原标题:提高AI深度学习效率|清除"暗"数据为首要任务

我们都知道人要保持充沛的精力,离不开食物、水等能量供给,只有保持充沛精力才会有力量去发现、去创造。

图片 1

同样,要想一个医疗AI像人类那样思考,成为医生的得力助手,就必须“喂”给它大量的数据,帮助它从中找出规律。

想要将某个领域的发展继续推进,有时候必须停下来看看现有的状况,进行策略性整理和分析,才能订出未来发展的大方向。医疗领域的发展也是如此,在医院收集的数十亿笔病例中,包括CT图、X光图、病理图等数子化医疗记录,我们为了要发展精准的医疗科技,近几年科学家希望能通过人工智能的技术在这些数据中找出核心关键。

而现在,医疗AI却面临“双重挑战”,一是缺乏训练样本,二是缺乏标注。

来自美国斯坦福大学(Stanford University)博士研究员Leon Bergen在TRANS Conference 2018论坛上表示,医疗机构现有的数据将会是未来数字医疗发展的重要资料库,我们通过计算机建模和实验来研究语言学方法,在语言分析过程中清除不相关的资料。拥有一个有效且完整的医疗数据库,必须先清除医疗资料库中的暗数据,才能进一步分析,并提供医疗人员正确的决策方向。

这两大挑战让深度学习严重“弹药不足”,由此衍生出的“小样本学习”问题一定程度上阻碍了AI医学影像的发展,难道就这样止步不前?这些问题到底该如何突破?

图片 2

图片 3

目前医疗护理流程图、医生诊断记录、放射科报告、肺部疾病报告的数字化医疗数据都可以透过AI进行分析。研究员Bergen表示,在进行数据分析之前,整理杂乱且无法直接使用的暗数据(Dark Data)是相当重要的一点。技术人员提供整理过的数据给AI系统进行深度学习,在这过程中包含了收集大量数据、清除暗数据、训练神经网络和通过网络内容进行分析。

在5月30日-6月2日的“中国医师协会第十三次放射医师年会”上,腾讯优图实验室医疗AI总监郑冶枫博士,在题为“深度学习在医学影像分析上的应用”的分享中,讲述了腾讯优图实验室通过迁移学习和计算机合成图像两大方法,突破医疗AI数据量不足,没有办法像传统机器学习那样用大数据进行喂哺的问题。

Bergan指出,在训练AI系统的深度学习过程中,研发人员必须不怕出错,在不断试验的过程当中,神经网络会依循每一次的结果改进,并给予不同以往的产出。研发人员必须评估神经网络产出的结果,并调整网络的学习数据。

图片 4

图片 5

郑冶枫博士在中国医师协会第十三次放射医师年会上做主题演讲

举例来说,当系统判断病患有67%的死亡率,数据人员就必须依照最后病患实际的存活状况来调整系统的数据设定。通过真实的结果与事先预测之间差异的反馈,才能不断提高之后的预测精准度。

腾讯优图实验室是腾讯顶级人工智能实验室之一,专注于在人脸、图像、视频、医疗影像等领域开展技术研究。腾讯首款将人工智能技术运用在医学领域的产品“腾讯觅影”,即是由腾讯医疗健康事业部牵头,优图实验室提供的算法支持。

以往数据似乎就是片段的资讯,然而现在图形数据已经可以透过强大的图形处理器(GPU),提供既快速又系统化的分析。不过在电脑断层扫描(CT)的分析上,有时候还会出现AI分析的结果与医生的判断有出入。此时,就必须比对神经网络、医生诊断和CT图片上的各种差异。

医疗AI面临“双重挑战”

图片 6

当前人工智能技术的迅猛发展,与强大的计算能力、合理的优化算法和高质量的大数据密切相关。要让机器像人类那样思考,成为医生的得力助手,就必须“喂”给它大量的数据,帮助它从中找出规律。但是,在医疗人工智能领域,这一切却没有这么简单。郑冶枫博士提到,近年来,深度学习在包括图像识别、游戏、语音识别、自然语言处理等方面取得了重大发展。但是,医疗AI的发展却面临“双重挑战”。

对于人工智能是否取代人类,Bergen 表示,许多评论都认为在未来几十年之内,AI很有机会在很多领域的分析胜过人类,但要完全取代人类还是有困难的!返回搜狐,查看更多

一是缺乏训练样本。郑冶枫博士表示,“深度学习的目标是尽量端对端,图像进去、结果出来,因而网络越来越大,越来越多层,需要的训练样本也越来越多。”但与自然场景下自然图像获取不同,医学影像的获取十分艰难。

责任编辑:

一方面,图像采集的“高门槛性”也制约着训练样本的获取。“医学影像采集需要专门的设备,有一些设备非常昂贵,比如CT和核磁。”

另一方面,疾病本身的特殊性也对算法工程师获取样本造成阻碍,郑冶枫博士表示,“对于一些罕见病种,能够找到的图像就只有几百张或者一千来张,因为每年的发病量就那么多。”

二是缺乏标注。郑冶枫博士介绍道,对于自然图像来讲,其标定相对容易,即便是普通人也能够直接标注。但医学影像不同,其标注需要行业顶尖的专业医生参与。“现实是,培养一个医生需要十年时间甚至很长,加上临床、科研任务重,做数据标注对于医生来说也是‘有心无力’。”

两大方法突破医疗AI小样本学习问题

本文由金沙国际app发布于科学技术,转载请注明出处:如何“喂饱”医疗AI?腾讯这个实验室想了“两个

关键词: